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ABSTRACT

The theory of compressed sensing has shown that sparse sig-

nals can be reconstructed exactly from remarkably few mea-

surements. In this paper we consider a nonconvex extension,

where the �1 norm of the basis pursuit algorithm is replaced

with the �p norm, for p < 1. In the context of sparse error

correction, we perform numerical experiments that show that

for a fixed number of measurements, errors of larger support

can be corrected in the nonconvex case. We also provide a

theoretical justification for why this should be so.

Index Terms— Signal reconstruction, error correction,

minimization methods, linear codes, random codes.

1. INTRODUCTION

Recent papers [1, 2] have introduced the concept of com-
pressed sensing. The basic principle is that sparse or com-

pressible signals can be reconstructed from a limited (or com-

pressed) number of random projections. A few of the many

potential applications are medical image reconstruction [3],

image acquisition [4], and sensor networks [5].

The first algorithm presented in this context is known as

basis pursuit [6]. Let Φ be an M × N measurement matrix,

and Φf the vector of M measurements of an N -dimensional

signal f . The reconstructed signal u∗ is the minimizer of the

�1 norm, subject to the data:

min
u
‖u‖1, subject to Φu = Φf. (1)

A remarkable result from [7] is that if the rows of Φ are

randomly chosen, standard-normally distributed vectors, there

is a constant C such that if the support of f has size K and

M ≥ CK log(K/N), then the solution to (1) will be exactly

u∗ = f with overwhelming probability. The required C de-

pends on the desired probability of success, which in any case

tends to one as N →∞.

Variants of this result include Φ being a random Fourier

submatrix, or having values ±1/
√

N with equal probability.

Also, f can be sparse with respect to any basis, with u re-

placed with Ψu for suitable unitary Ψ.

A family of iterative greedy algorithms [8, 9, 10] have

been shown to enjoy a similar exact reconstruction property,

generally with less computational complexity. However, these

algorithms require more measurements for exact reconstruc-

tion than the basis pursuit method.

In this paper, we take the opposite approach, and show

that a nonconvex variant of basis pursuit will produce exact

reconstruction with fewer measurements. Specifically, we re-

place the �1 norm with the �p norm, where 0 < p < 1 (in

which case ‖ · ‖p isn’t actually a norm, though d(x, y) =
‖x− y‖p

p is a metric):

min
u
‖u‖p

p, subject to Φu = Φf. (2)

That fewer measurements are required for exact reconstruc-

tion than when p = 1 was demonstrated by numerical ex-

periments in [11], with random and nonrandom Fourier mea-

surements. A similar approach was used by Rao and Kreutz-

Delgado [12] for basis selection. In this paper, we consider

the context of error correction, and our measurements will be

random Gaussian projections. In Section 2 we provide a theo-

retical result (based on one from [13]) justifying the increased

likelihood of exact reconstruction. In Section 3, numerical ex-

periments will show that using p < 1 allows perfect recovery

from the corruption of a greater number of entries.

2. ERROR CORRECTION

We consider the abstract encryption framework described in

[13]. Let A be an m × n matrix, with m > n. If A has full

rank, we can regard it as a linear block cipher, with a plaintext

f ∈ R
n encrypted as Af . We suppose the ciphertext Af is

corrupted by an error vector e ∈ R
m, with the property that

the support of e is at most r: ‖e‖0 ≤ r. Given the corrupted

ciphertext y = Af + e, under what circumstances can we

recover Af (and hence f ) exactly?

This problem can be recast into the form of (2) by the use

of a matrix B whose kernel is the range of A. Then By =
B(Af + e) = Be. We attempt to reconstruct e from the

measurement vector By(= Be), by solving (2):

min
d
‖d‖p

p, subject to Bd = Be. (3)

If the unique minimizer is d = e, then we will have the error

vector e, from which we can recover the plaintext from Af =
y − e.
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Bu = Be

e

(a) p < 1

Bu = Be

e

(b) p = 1

Fig. 1. Exact reconstruction occurs if the constraint plane

meets the �p sphere containing e only at e. For sparse e, this

condition is more likely for p < 1 if one only need consider

points near e.

Still following [13], the substitution d = y − Af̃ yields

the unconstrained problem

min
f̃
‖y −Af̃‖p

p, (4)

as B(y − Af̃) = By = Be for all f̃ ∈ R
n. Our numeri-

cal experiments in Section 3 will consist of solving (4) and

comparing the minimizer with f .

The geometry of (3) is depicted in Figure 1. Exact recon-

struction corresponds to e being the only point of intersection

of the affine space Bd = Be and the �p-sphere containing e.

If e is sparse, this will be true for many B, seemingly to the

same degree whether p = 1 or p < 1. This changes, however,

in higher dimensions, or if a solution of (3) must also be close

to e. The smaller p is, and the closer a solution to (3) must be

to e, the more likely that a given choice of B will yield exact

reconstruction. And it is the sparsity of e that will contribute

to the requirement that a minimizer be close to e.

This brings us to the concept of an approximate S-

restricted isometry, as introduced in [14]. For a k×m matrix

B and T ⊂ {1, . . . , m}, let BT be the matrix consisting of

the columns bj of B for j ∈ T . (We will use similar notation

for vectors, with uT (t) = u(t) if t ∈ T and 0 otherwise.) For

each number S, define the S-restricted isometry constant of

B to be the smallest δS ≥ 0 such that for all subsets T with

|T | ≤ S and all c ∈ R
|T |,

(1− δS)‖c‖22 ≤ ‖BT c‖22 ≤ (1 + δS)‖c‖22. (5)

Thus if T0 is the support of e, Bd = Be, and d is supported

on T0, we will have ‖d − e‖22 ≤ ‖B(d − e)‖22/(1 − δr) =
0, provided δr < 1. However, there is no guarantee that a

minimizer of (3) will be supported on T0, or even be sparse.

Working in tandem with (5) will be the following obser-

vation, essentially from [15]. Let d be a solution of (3), and

let h = d− e. By the triangle inequality for ‖ · ‖p
p, we have

|‖e‖p
p − ‖ − hT0‖p

p| ≤ ‖e + hT0‖p
p. (6)

Since T0 ∩ T c
0 = Ø, we have

‖e‖p
p − ‖hT0‖p

p + ‖hT c
0
‖p

p ≤ ‖e + hT0 + hT c
0
‖p

p

= ‖e + h‖p
p = ‖d‖p

p ≤ ‖e‖p
p,

(7)

the last inequality holding because d solves (3). The result is

that

‖hT c
0
‖p

p ≤ ‖hT0‖p
p. (8)

In other words, although d need not be sparse, a bound exists

on the portion of d outside the support of e (note that dT c
0

=
hT c

0
). The more sparse e is, the stronger (8) is.

The final piece of this picture is the following result. It

quantifies the restricted isometry condition necessary for ex-

act reconstruction, and generalizes and improves for p < 1
the corresponding result of [13].

Theorem 2.1. Let the block cipher A be an m × n matrix
with m > n. Let f ∈ R

n be a plaintext, e ∈ R
m an error

vector, and let r = ‖e‖0 be the size of the support of e. Let
B be a matrix whose kernel is the range of A. Let p ∈ (0, 1],
a = 3p/(2−p). Suppose that B satisfies

δar + 3δ(a+1)r < 2. (9)

Then the unique minimizer of (3) is exactly e, and we can
recover the plaintext f exactly from the corrupted ciphertext
y = Af + e as the unique minimizer of (4).

For p = 1, this is exactly as appears in [13]. For a given

B, the restricted isometry condition (9) will hold for larger

values of r when p < 1. We thus can expect to be able to

correct errors of larger support in this case.

It is also shown in [13] that in the case of random, Gaus-

sian ciphers, the condition of Theorem 2.1 holds (for p = 1,

a fortiori for p < 1) with overwhelming probability, provided

r < ρm for some constant ρ. The value of ρ given is very far

from sharp, however.

Proof of Theorem 2.1. The proof generally follows the lines

of [13], but with a simplification. (Specifically, equation (2.2)

therein is not required.) As above, we consider a solution d of

(3) (that such exists is geometrically obvious). Let h = d− e;

we wish to show that h = 0. Let T0 be the support of e. Let

M = ar. Arrange the elements of T c
0 in order of decreasing

magnitude of |h| and partition into T c
0 = T1 ∪ T2 ∪ · · · ∪ TL,

where each Tj has M elements (except possibly TL). We do

this because the restricted isometry condition gives us control

over the action of B on small sets. Denote T01 = T0 ∪ T1.
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We decompose Bh:

0 = ‖Bd−Be‖2 = ‖Bh‖2 =
∥∥∥∥BT01hT01 +

L∑
j=2

BTj
hTj

∥∥∥∥
2

≥ ‖BT01hT01‖2 −
∥∥∥∥

L∑
j=2

BTj
hTj

∥∥∥∥
2

≥ ‖BT01hT01‖2 −
L∑

j=2

‖BTj
hTj
‖2

≥
√

1− δM+r‖hT01‖2 −
√

1 + δM

L∑
j=2

‖hTj
‖2.

(10)

Now we need to control the size of the ‖hTj
‖2. We aim to use

(8), for which we must estimate the �2 norm in terms of the

�p norm. For each t ∈ Tj and s ∈ Tj−1, |h(t)| ≤ |h(s)|, so

that

|h(t)|p ≤ ‖hTj−1‖p
p/M. (11)

Then

‖hTj
‖22 ≤M‖hTj−1‖2p/M2/p, (12)

so that

L∑
j=2

‖hTj‖2 ≤
( L∑

j=1

‖hTj‖p

)
/M1/p−1/2

≤ ‖hT c
0
‖p/M

1/p−1/2,

(13)

where we have used the reverse triangle inequality property

of the �p norm for p ≤ 1. Now we may use (8), and then

convert back from �p to �2 by means of Hölder’s inequality:

‖hT0‖p
p =

∑
t∈T0

|h(t)|p · 1 ≤
(∑

T0

|h(t)|2
) p

2
(∑

T0

1

)1− p
2

= ‖hT0‖p
2|T0|1−p/2.

(14)

Combining, we obtain

L∑
j=2

‖hTj
‖2 ≤ ‖hT0‖p/M

1/p−1/2 ≤ ‖hT0‖2
( |T0|

M

) 1
p− 1

2

= ‖hT0‖2/
√

3.

(15)

Putting together with (10), we have

0 ≥
√

1− δM+r‖hT01‖2 −
√

1 + δM‖hT0‖2/
√

3

≥
(√

1− δM+r −
√

1 + δM/
√

3
)
‖hT01‖2.

(16)

The condition (9) of the theorem ensures that the scalar factor

is positive, so hT01 = 0. In particular, hT0 = 0; then h = 0
follows from (8).

3. NUMERICAL EXPERIMENTS

We present the results of numerical experiments investigating

the ability of (4) to reconstruct a plaintext from a corrupted

ciphertext. We adopt the approach of [13], to facilitate di-

rect comparison. We used n = 128, and both m = 256 and

m = 512. For each m, we used 20 different values of r,

chosen as a percentage of m. For each value of m and r,

the following was repeated 100 times. The elements of the

m × n cipher A and the n × 1 plaintext f were randomly

chosen from the standard normal distribution. The r entries

to be corrupted were randomly chosen, and the correspond-

ing values of the error vector e were chosen from the standard

normal distribution. We let y = Af +e, and computed a local

minimizer f∗ of (4), for each p ∈ {0.1, 0.2, . . . , 1}. The re-

construction was deemed exact if every entry of |f∗ − f | was

less than 10−6; for p < 1, such “exact” maximum residuals

were generally less than 10−13. Further iteration of the algo-

rithm below would generally reduce p = 1 residuals below

10−13 as well.

To compute a local minimizer of (4), we used an algorithm

based on the lagged-diffusivity algorithm of Vogel and Oman

[16] for total-variation minimization. Consider the Euler-

Lagrange equation for (4):

AT |Af̃ − y|p−2(Af̃ − y) = 0. (17)

Given the nth iterate f̃n, we solve for the next iterate f̃n+1

by “lagging” the nonlinear terms in (17), resulting in a linear

equation:

AT |Af̃n − y|p−2Af̃n+1 = AT |Af̃n − y|p−2y. (18)

The iteration was begun with the least-squares solution (that

for p = 2). To avoid division by zero, |Af̃ − y| was approx-

imated by
(
(Af̃ − y)2 + ε

)1/2
. The value of ε was initially

set to 1, and the minimizer computed. The process was then

iterated with ε 100 times smaller than the previous value, and

with the previous minimizer used as the initial iterate, a total

of 10 times. The entire process took approximately 9 seconds

on a 2.8 GHz processor for m = 512, 3 seconds for m = 256.

Results of the experiments are plotted in Figure 2. Call

the corruption rate ρ = r/m. For plaintext size n = 256
and p = 1, exact reconstruction occurred all 100 times for a

corruption rate of ρ ≤ 10%, and 99 times for ρ = 15%. Using

p = 0.9 gave exact reconstruction 100 times for ρ ≤ 15%
and 99 times for ρ = 17.5%. For p = 0.8 or less, exact

reconstruction always occurred for ρ ≤ 20%.

When the plaintext size was n = 512, exact reconstruc-

tion occurred always for p = 1 when ρ ≤ 32.5%, 99% of

the time for ρ = 35%. For p = 0.9, we had 100% exact

reconstruction for ρ ≤ 40%, and 99 times for ρ = 42.5%.

Decreasing p to 0.8 or 0.7 increased the corresponding values

of ρ to 42.5% and 45%. For p = 0.6 and 0.5, exact recon-

struction always occurred for ρ ≤ 45%. For p ≤ 0.4, this

happened for ρ ≤ 47.5%.
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(a) m = 256

(b) m = 512

Fig. 2. Plots of observed frequency of exact reconstruction

versus sparsity of ciphertext errors, for values of p used in �p

minimization ranging from 1 (solid line, square marker) down

to 0.1 (solid line, ‘+’ marker; values from 0.9 to 0.2 are dotted

lines, from left to right). Even p = 0.9 shows substantial

improvement over p = 1. When m, the ciphertext size, is 256,

decreasing p from 1 to 0.8 or lower allows an additional 25

entries to be corrupted and still expect exact reconstruction of

the plaintext. For m = 512, 77 more entries can be corrupted

by decreasing p to 0.4 or lower.

Considering all observed probabilities of exact reconstruc-

tion, from the plots we see that even a decrease of p from 1 to

0.9 results in a substantial improvement. Decreasing p further

yields improvement, but by less and less as p gets smaller.
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